skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Claudio Antares Mezzina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Claudio Antares Mezzina (Ed.)
    This article designs a general principle to check the correctness of the definition of concurrency (a.k.a. independence) of events for concurrent calculi. Concurrency relations are central in process algebras, but also two-sided: they are often defined independently on composable and on coinitial transitions, and no criteria exist to assess whether they “interact correctly”. This article starts by examining how reversibility can provide such a correctness of concurrencies criterion, and its implications. It then defines, for the first time, a syntactical definition of concurrency for CCSK, a reversible declension of the calculus of communicating systems. To do so, according to our criterion, requires to define concurrency relations for all types of transitions along two axes: direction (forward or backward) and concomitance (coinitial or composable). Our definition is uniform thanks to proved transition systems and satisfies our sanity checks: square properties, sideways diamonds, but also the reversible checks (reverse diamonds and causal consistency). We also prove that our formalism is either equivalent to or a refinement of pre-existing definitions of concurrency for reversible systems. We conclude by discussing additional criteria and possible future works. 
    more » « less